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A B S T R A C T

Modeling individual trees in tropical rain forests in the Amazon allows for the safe use of scarce resources in a
sustainable way. Unfortunately, in the Brazilian Amazon, rain forest growth and production models are not yet
used to estimate future forest stock. Thus, forest management plans do not present technical-scientific support
that guarantees sustainable production of wood throughout the cutting cycle. Therefore, this work aims to
estimate the survival and mortality of individual trees in a selectively harvested forest using Artificial Neural
Networks (ANN) to support silvicultural decisions in forest management in the Amazon rain forest. In 1979, a
selective harvest was carried out, with 72.5 m3 ha-1 in an area of 64 ha in Floresta Nacional do Tapajós, in the
state of Pará, Brazil. In 1981, 36 permanent plots were installed at random and inventoried. Nine successive
measurements were carried from 1982 to 2012. In the modeling, classification, survival, and mortality, training
and ANN testing were performed, using input variables such as: different semi-distance-independent competition
indices (DSICI), diameter measured (dbh), forest class (FC), trunk identification class (TIC), competition index
(CI), growth groups (GG), liana infestation intensity (liana); and crown lighting (CL); Damage to tree (D) and tree
rotting (R). The categorical output variables (Classification) were Dead or Surviving tree. Overall efficiency of
the classification was above 89% in training and above 90% in the test for all ANNs. Survival classification hit
rate was above 99% in the test and training for all ANNs but the mortality score was low, with hit rates below
6%. The overall Kappa coefficient was below 8% for all ANNs (ranked “poor”) but all ANNs were above 55% in
the survival classification (ranked “good”). ANN estimates the individual survival of trees more accurately but
this does not occur with mortality, which is a rarer event than survival.

1. Introduction

Studies on the dynamics of rain forests are important to understand
the evolution of the forest ecosystem after anthropic disturbances, for
example, during forest management for wood production. These studies
provide information to model growth and production, and for prognosis
on the forest structure throughout the cutting cycle. One of the main
contributions is the use of models for individual trees, which is one of

the alternatives to manage rain forests with a view to sustainability
(Reis et al., 2016).

The individual tree models estimate the survival and mortality,
these components of forest dynamics are required for correct prognosis
on number of trees, basal area, distribution of diameters and produc-
tion.

One of the problems in modeling mortality is that several random
factors may cause the death of trees. For example, regular mortality is
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caused by aging, suppression and competition, as well as events that
occur less frequently, for example, normal incidence of plagues and
diseases, and meteorological phenomena (droughts, storms, etc.); by
comparison, irregular mortality may be caused by large-proportion
fires, plague and disease outbreaks, as well as more severe adverse
meteorological conditions (Vanclay, 1994). Mortality also occurs as a
result of injuries induced by wood harvesting, which may damage roots
and barks, creating points of entry of plagues and diseases; as well as
disturbances on the canopy, which may lead to disadvantages to some
tree species (Vanclay, 1994).

Tree mortality ratio may be reached using regression (Phillips et al.,
2004, 2003; Valle et al., 2007). These authors used a system of equa-
tions to estimate the likelihood of natural mortality of trees by con-
sidering only a diameter-dependent stochastic process, or artificial in-
telligence methods, mainly Artificial Neural Networks (ANNs)
(Diamantopoulou, 2005; Reis et al., 2016). ANNs are computer models
inspired by the nervous system of living beings. One ANN creates a set
of parallel processing units, characterized by artificial neurons that are
interconnected through a large number of interconnections (Silva et al.,
2010).

Different studies that modelled mortality and survival of individual
trees using ANN found a more adequate fit than traditional statistical
techniques (Guan and Gertner, 1991a, 1991b; King et al., 2000). They
have shown that it is possible to have a prognosis on the individual
survival and mortality of trees using ANN. These authors used two
models to estimate tree mortality: one model with two independent
variables, DBH and increase in DBH, and one model with three vari-
ables, with an extra categorical variable which represented the condi-
tion of the tree. The output was categorical (classification), that is, the
dead tree was coded with 0 and the survivor with 1. The ANN results
were compared with logistic regression, and better responses were
found to predict mortality.

This estimate with ANN for the purpose of classification, indicating
whether the tree is dead or alive, shows that ANN has a far more
complex function than traditional classification techniques. The final
discriminant function is highly flexible and non-linear, and it offers
better separation (King et al., 2000).

However, only one study was found on modelling of tree mortality
in rain forests (Castro et al., 2015), but it did not involve an extended
period of time nor was it conducted in a harvested forest, whose dy-
namics is quite different from unharvested areas (Reis et al., 2015).

Growth prognosis on the individual diameter of trees, after har-
vesting in a tropical rain forest in the Amazon, was precisely estimated
using ANN (Reis et al., 2016), and the same occurred in other types of
uneven-aged forests (Ashraf et al., 2015; Richards et al., 2008).

Given the problem in offering a prognosis on the survival and
mortality of individual trees in tropical rain forests, the aim of this
study was to offer a prognosis for the individual survival and mortality
of trees using post-harvest artificial neural networks in the Amazon, in
order to offer input for forestry decisions in forest management.

2. Material and methods

2.1. Study area

The study area is located in the Tapajós National Forest, near Km 67
(55° 00′W, 2° 45′ S) of the BR-163 Highway, Cuiabá-Santarém. It is part
of the Amazon biome and the typology is solid-ground, Dense
Ombrophilous Forest. The climate of the region is humid and tropical
with mean annual temperature of 26 °C, and it is classified as Ami ac-
cording to Köppen’s system. Mean relative humidity corresponds to
86%, with mean annual rainfall from 1900 to 2200mm. It has flat to
wavy topography, with the occurrence of a Dystrophic Yellow Latosol
(Alvares et al., 2013; Costa Filho et al., 1980).

In the Tapajós National Forest, especially in the study area, Costa
Filho et al. (1980) reported the use of selective harvest, conducted

during the 1940s, for four species with high commercial value: Brazi-
lian rosewood (Aniba rosaeodora Ducke), Brazilian redwood (Manilkara
huberi (Ducke) A. Chev.), Brazilian walnut (Cordia goeldiana Huber) and
cedar (Cedrela odorata L.). In 1979, an intensive harvest of 64 wood
species was conducted on 64 ha of the study area, with mean extraction
volume of 72.5m3 ha−1 (Reis et al., 2010).

The species that stood out in terms of harvest volume, at the time,
were: Hymenaea courbaril L., Carapa guianensis Aubl., Manilkara huberi,
Lecythis lurida (Miers) S. A. Mori., Bertholletia excelsa Humb. & Bonpl.,
Astronium lecointei Ducke, Goupia glabra Aubl., Virola michelii Heckel,
Erisma uncinatum Warm. and Terminalia amazonia (J. F. Gmel) Exell,
which, together, represented 47.4% of the total extracted volume (Reis
et al., 2010). The harvest was conducted according to two treatments:
cutting all trees with dbh≥ 45 cm, on 39 ha; and cutting the trees with
dbh≥ 55 cm, on 25 ha (Costa Filho et al., 1980). However, the treat-
ments were considered together, by creating only one community,
while taking into account the high similarity found in the comparisons
which had been made (Reis et al., 2010).

In 1981, 36 permanent plots of 50m x 50m each were randomly
installed, where all trees with dbh≥ 5 cm were botanically identified in
loco. New measurements for these permanent plots occurred in 1982,
1983, 1985, 1987, 1992, 1997, 2007, 2010, and 2012 (Reis et al.,
2016).

2.2. Variables and data used for training and testing of neural networks

The permanent plots were divided into two groups: one group
consisted of 29 plots for training of ANNs, and one group had 7 plots,
for the generalization of trained ANNs, with a total of 80% of data for
training and 20% for generalization (test). The plots used in the gen-
eralization (test) were not part of the training set. This was to evaluate
the model with independent data to the training of ANNs (Reis et al.,
2016). A total of 78,067 individuals were monitored over time; there
were 8332 cases of mortality and 69,735 cases of survival. For mor-
tality, the training used 6819 trees while the test used 1513. For sur-
vival, the training used 56,421 trees while the test used 13,314.

To model the mortality and survival of individual trees, the entry
variables were: diameter measured at a height of 1.30m (dbh), forest
class (FC), trunk identification class (TIC), competition index (CI),
growth groups (GG), liana infestation intensity (liana): variable not
observed; liana1: no presence of liana on the tree; liana2: presence of
lianas, however, with no injuries; and liana3: presence of lianas, re-
stricting growth); and crown lighting (CLI0: variable not observed;
CLI1: emerging top or completely exposed to light; CLI2: partially
lighted top, that is, partially covered by neighboring tree tops; CLI3: top
completely covered by neighboring tree tops) (Reis et al., 2016); in-
juries to the tree (D0: variable not observed; D1: tree with no injuries;
D2: mild injuries caused by natural causes; D3: mild injuries caused by
harvesting; D4: injuries caused by cutting the lianas; D5: severe injuries
due to natural causes; D6: severe injuries caused by harvesting; D10:
recovered injuries) and tree rotting (R0: variable not observed; R1: no
rotting and R2: presence of rotting). The categorical output variables
(Classification) were Dead or Surviving tree.

The forest classes (FC) were defined according to the methodology
suggested by Silva et al., 2005:

1 Mature forest: the sub-plot shows at least one tree whose diameter is
equal to or larger than 40 cm

2 Forest under construction: the sub-plot has at least one tree whose
diameter is equal to or larger than 10 cm and smaller than 40 cm

3 Clearing: there is an opening on the canopy of at least 50% of the
area of the sub-plot and few or no trees with a diameter larger than
10 cm on the sub-plot. When existing, the crowns project themselves
outside the limits of the sub-plot.

Trunk identification classes (TIC) were defined using the
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methodology suggested by Silva et al., 2005:

1 Living standing tree, complete.
2 Living standing tree, no crown, trunk>4.0m.
3 Living standing tree, no crown, trunk<4.0m.
4 Living fallen tree.
5 Supported tree due to natural cause.
6 Bent tree due to natural cause.
7 Arched tree due to natural cause.

The competition indexes tested on this study were the distance semi-
independent competition indexes (DSICI), among which are:
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Eq. (3) Adapted from Phillips et al. (2004)
where, Dt is the diameter of the study tree; d 2 is the arithmetic mean

of the diameters on the sub-plot of the study tree; Bali is the sum of the
sectional areas of the neighboring trees larger than the sectional area of
the study tree, on the sub-plot; Z1 and Z2 are the relative importance
coefficients for competition of zones 1 and 2, respectively; Di and Dj are
the “over-topping” trees on both zones. n1 and n2 are the total number
of “over-topping” trees on the three zones. The “over-topping” trees are
the ones whose diameter is larger than that of the study tree on the sub-
plots in both zones.

Zona 1 is a 10×10m square containing t trees (Fig. 1). Zone 2 is
defined as relative to zone 1. Random weights are attributed, reflecting
the competition on each zone, considering Z1=9 and Z2=4 (Phillips
et al., 2004; Reis et al., 2016).

A cluster analysis was made according to the Euclidean distance
method in order to classify the species into growth groups by using the
annual periodical increment to the diameter (APIdbh), in mm year−1

(Reis et al., 2016), of the botanical families over the different periods
(1981–1982, 1982–1983, 1983–1985, 1985–1987, 1987–1992,
1992–1997, 1997–2007 and 2007–2012), where four growth groups
were created (Table 1).

2.3. Training and evaluation of ANNs

The training of ANNs consisted on applying a set of organized steps
with the purpose of adjusting the weights and thresholds of the neu-
rons. Therefore, the purpose of such adjustment process, also known as

learning algorithm, was to tune the network in order for the responses
to be similar to the output values (Silva et al., 2010).

In the modeling process, 1200 ANNs were trained, 300 for each
competition index being evaluated (DSICI1, DSICI 2, and DSICI 3) and
300 ANNs without the competition index variable in order to simplify
the ANNs in the modeling process (Table 2).

Training was based on the generalized delta rule, also known as the
backpropagation algorithm, applied in multi-layer feed forward
networks–Multilayer Perceptron (MLP), as shown in Fig. 2.

The backpropagation algorithm is performed by successive appli-
cations of two specific phases. According to Silva et al. (2010) the first
phase to be applied is called “forward propagation”, in which signals
{x1, x2,…, xn} of a sample of the training set are inserted into the
network inputs and are propagated layer by layer until the respective
outputs are produced. The application of this phase aims only to obtain
the network responses, taking into account only current values of sy-
naptic weights and thresholds of its neurons, which will remain un-
changed during each execution. Subsequently, the responses produced
by the outputs of the network are compared with the respective desired
responses that are available, the respective deviations (errors) between
the desired responses and those produced by the output neurons are
then calculated, which will subsequently be used to adjust the weights
and thresholds of all their neurons. Because of these error values, the
second phase of the backpropagation method, called “reverse propa-
gation” (backward), is then applied. The changes (adjustments) of the
synaptic weights and thresholds of all the neurons of the network are
executed during this phase (Silva et al., 2010).

In summary, the successive applications of the forward and back-
ward phases make the synaptic weights and thresholds of the neurons
automatically adjust at each iteration, implying a gradual decrease in
the sum of the errors produced by the responses of the network com-
pared with the desired ones (Silva et al., 2010).

For training, the Intelligent Problem Solver (IPS) tool of the
Statistica 13 software (StatSoft Inc, 2016) was used to analyze the ac-
tivation functions (Table 3) of the intermediate and output layers
(Identity, Logistics, Hyperbolic Tangent and Exponential). The initial
weights of the networks were randomly generated, and the stopping
criterion of the algorithm occurred when the mean square error or the
cross-entropy error began to increase; on that occasion the training was
interrupted. Network training continued up to 10,000 cycles as long as
the error was decreasing.

For the purpose of training, only one hidden layer was used, and the
neuron number interval on this layer was defined using the Fletcher-
Gloss method (Silva et al., 2010). The neuron number interval was
established according to the number of input and output variables,
considering the following expression:

+ ≤ ≤ +n n n n(2. ) (2. 1)2 1 (4)

where n is the number of network inputs, n1 is the amount of neurons
on the hidden layer, and n2 is the amount of neurons on the output

Fig. 1. Competition zones considering a tree on the sub-plot. Adapted
from Phillips et al. (2004).
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layer.
The maximum defined by this method avoids the memorization of

input data (overfitting) or the insufficient collection of information
during training (underfitting).

In order to observe whether there is any simple linear correlation
among the continuous input variables and the ANN output, a simple
linear correlation statistical analysis was made at 5% of significance,
using the mean of the permanent plots. With samples of n pairs of va-
lues Xi, Yi (i = 1, 2, …, n), the (rxy), correlation may be calculated from
the following expression:

=r Cov Y X
S X S Y

( , )
( ) ( )

YX 2 2 (5)

The classification was evaluated by generating the error matrix
(2×2), and omission error (OE), commission error (CE), hit rate,
global accuracy Index and total Kappa coefficient (Cohen, 1960) and
conditional Kappa coefficient (by class) could be calculated. The Kappa
statistics is usually used to evaluate the accuracy of classification (King
et al., 2000; Moisen and Frescino, 2002):
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where:
k=Kappa coefficient; kcond= conditional Kappa coefficient by

class; r=number of rows on the matrix; xii=number of observations
on the row(i) and column(i), diagonal values of the matrix; xi+= total
marginal of the row (i); x+i= total marginal of the column (i); and

Table 1
Growth groups created from the Annual Periodical Increment on dbh (APIdbh) of the botanical families after the forestry harvesting.

Groups Families APIdbh (mm year−1)

1 To be identified, Chrysobalanaceae, Connaraceae, Lamiaceae, Lecythidaceae, Myrtaceae, Ochnaceae, Opiliaceae, Quiinaceae, Rubiaceae,
Rutaceae, Sapindaceae, Siparunaceae and Violaceae.

1.355

2 Achariaceae, Annonaceae, Apocynaceae, Aquifoliaceae, Boraginaceae, Burseraceae, Caryocaraceae, Celastraceae, Clusiaceae, Dichapetalaceae,
Ebenaceae, Elaeocarpaceae, Euphorbiaceae, Hippocrateaceae, Lacistemaceae, Lauraceae, Leguminosae-papilionoideae, Malvaceae,
Melastomataceae, Moraceae, Myristicaceae, Nyctaginaceae, Olacaceae, Polygonaceae, Salicaceae, Sapotaceae, Solanaceae and Ulmaceae.

2.731

3 Anacardiaceae, Combretaceae, Goupiaceae, Humiriaceae, Leguminosae-caesalpinioideae, Malpighiaceae, Meliaceae and Simaroubaceae. 3.856
4 Araliaceae, Bignoniaceae, Bixaceae, Caricaceae, Leguminosae-mimosoideae, Rosaceae, Urticaceae and Vochysiaceae. 7.771

Table 2
Variables used to train the artificial neural networks (ANN) in a forest after forestry
harvesting in the Eastern region of the Amazon.

Competition index Input variables Number of
trainings

Categorical
output

DSICI1 dbh1, FC, GG, TIC,
liana, CL, DSICI1, D, R

300 D and S

DSICI 2 dbh1, FC, GG, TIC,
liana, CL, DSICI2, D, R

300 D and S

DSICI 3 dbh1, FC, GG, TIC,
liana, CL, DSICI3, D, R

300 D and S

No DSICI dbh1, FC, GG, TIC,
Liana, CL, D, R

300 D and S

General Total 1200

Continuous input variables: DSICI: Distance semi-independent competition index; dbh1:
Current diameter measured at 1.30m from the soil (mm); Categorical input variables: FC:
forest class; GG: growth group; TIC: trunk identification class; liana: liana infestation
intensity; CL: crown lighting; D: damage and R: rotting. Categorical output: Dead Tree (D)
or Surviving Tree (S).

Fig. 2. A multi-layer feedforward network consisting of an input
layer composed of n signals, a hidden neural layer, consisting of n1
neurons and an output neural layer composed of m neurons re-
presenting the respective output values of the application.
Adapted from Silva et al. (2010).

Table 3
Activation functions used in the training of artificial neural networks.

Function Equation Description Interval

Identity α With this function, the activation
level is transmitted directly as the
output of the neurons.

(-∞, +∞)

Logistic
+ −e α

1
1

This is an S-shaped curve (sigmoid). (0, 1)

Hyperbolic
tangent

− −

+ −
eα e α

eα e α
It is a symmetric S-shaped (sigmoid)
function.

(−1, +1)

Exponential −e α Negative exponential function. (0, +∞)

α: is the net input of a neuron, for MLP − is the weighted sum of the inputs of the
neurons.
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N= total number of observations.
The Kappa coefficient may be evaluated using the following classi-

fication quality scale (Landis and Koch, 1977): k≤ 0.20 (poor),
0.21–0.40 (average), 0.41–0.60 (moderate), 0.61–0.80 (satisfactory)
and 0.81–1.00 (very satisfactory).

The diametric distribution of the surviving trees was evaluated for
the different years using the Chi-square adherence test (χ2) at 5% sig-
nificance.

3. Results

The means of the continuous input independent variables used on
ANN were not linearly correlated with the mean relative to the survival
and mortality rates (Table 4). No competition index tested showed any
relationship to mortality and survival percentages.

Global efficiency of the classification was over 89% during training
and over 90% for the test, for all ANNs (Table 5). The hit rate for
classification of the number of surviving trees was over 99% for the test
and training for all ANNs. This percentage was considered to be sa-
tisfactory for classification of survival. However, the classification for
number of dead trees showed low accuracy, with hit rates below 6%, for
the test and the training of ANNs. Nevertheless, the accuracy of the test
was higher than that of training, and this characterizes an efficient
generalization of ANN for independent data.

The ANN that used DSICI3 was the one with the highest hit rate for
mortality, and the ANN which did not use any competition index had
the lowest hit rate − under 5% for mortality. This ANN showed values
that were very similar, regarding hit rate for the survival classification,
with 99.72% for the classification, and 90.05% for global efficiency,
which was similar to the efficiency rate of ANNs which used DSICI 1 and
DSICI 3.

All ANNs showed an omission error (OE) over 94% for the training
and the test regarding the mortality classification; in opposition, the OE
for the survival classification was below 0.4%. This error represents
that trees are omitted from their correct class and they are assigned to
another class (Table 6). The commission error (CE) for all ANNs on the
training and the test were below 38% and 65%, respectively, for sur-
vival and mortality. This error represents the trees that were mistakenly
included in a certain class when they should be assigned to another

class.
The general Kappa coefficient was below 8% for all ANNs (Table 6),

both for the training and the test. According to the classification quality
scale of the Kappa coefficient (Landis and Koch, 1977), the classifica-
tion of all ANNs was considered as “poor” (k≤ 0.20). The network that
showed the highest Kappa coefficient was the one that used DSICI3, and
the lowest one was the one that did not use any competition index.

As regards the Kappa coefficient calculated by class (conditioned),
all ANNs reached above 55% for survival (Table 6). A highlight was the
ANNs that used the competition indexes DSICI2 and DSICI3, which
achieved Kappa coefficients of 64.2 and 61.1%, respectively, for the test
data. These classifications were considered as “satisfactory”, according
to the classification quality scale of the Kappa coefficient (0.61–0.80).

The mortality classification on all networks showed a Kappa coef-
ficient below 5% (Table 6), both for the test and training. The ANN that
showed the highest Kappa coefficient was the one that used DSICI3, for
training (3.43%) and the test (4.50%), according to the classification
quality scale of the Kappa coefficient, the classification of this network
was also considered as “poor” (k≤ 0.20).

The exponential diameter distribution of the estimated and ob-
served data of the surviving trees showed an inverted-J shape (Fig. 2).
The estimated distribution was not different from the distribution ob-
served (Table 6) for the years 1982, 1983, 1985, 1987 and 2012 for the
test data across all ANNs. The estimated diametric distribution for the
years 1992, 1997 and 2007 was different from the observed distribution
(Table 7); during those years, survival was overestimated at the smal-
lest diameter class center (7.5 cm), for all networks, for the test data
(Fig. 3).

4. Discussion

The high global efficiency indicated that the quality of the classifi-
cation was efficient; however, this efficiency considers only the main
diagonal of the error matrix, and it does not include the omission and
contingency errors for each one of the classes (Tables 5 and 6). This
may be observed by the high hit rate for survival, over 99%, and the
fact that mortality did not exceed 6%.

Since the Kappa coefficient uses the entire error matrix, not only the
main diagonal of this matrix, it offers a better representation of the
classification quality (Table 6). The general classification of the mor-
tality and survival was not precise, and it was classified as “poor”; this
is mainly due to the mortality classification, with the Kappa coefficient
also classified as “poor”.

The lack of a linear correlation across the means of the continuous
input variables and the survival and mortality percentages may indicate
that such means did not represent the complex and stochastic re-
lationship of the dynamics of these rates; however, a non-linear cor-
relation may exist across the variables (Table 4). The means of the tree
diameters (Vanclay, 1994) and the competition indexes by plot were
not linearly correlated with mortality; however, they are widely used as
indicators for the modelling of individual trees (Phillips et al., 2004).

Table 4
Linear correlation of Pearson between input and output variables used in ANN training
and test. S (%): Average survival rate; M (%): Average mortality rate; DSICI: semi-dis-
tance-independent competition index; dap1: diameter at the beginning of t time period of
the object tree (mm).

Variables S (%) M (%)

DSICI 1 −0.0379 0.0379
DSICI 2 0.1635 −0.1635
DSICI 3 0.0926 −0.0926
dbh 0.2930 −0.2930

*p < 0.05.

Table 5
Training precision measures and Artificial Neural Network (ANN) test in the classification of survival (S) and mortality (M) of individual trees. ICSID: semi-distance-independent
competition index; MLP: multilayer perceptron.

ANN Index Architecture MLP Training Test

HR HR OEE HR HR OEE
Numb.
input

Numb. Neurons
Intermediate layer

Numb. Neurons-
Output layer

Activation functions
Intermediate layer

Activation functions
Output layer

S M S M

DSICI 1 2 35 44 01:01 Logistic Exponential 99.71 3.92 89.38 99.7 5.22 90.05
DSICI 2 1 35 16 01:01 Hyperbolic tangent Hyperbolic tangent 99.71 4.03 89.39 99.7 5.02 90.07
DSICI 3 3 35 66 01:01 Hyperbolic tangent Exponenti al 99.73 4.09 89.42 99.7 5.29 90.05
No DSICI 5 34 59 01:01 Logistic Hyperbolic tangent 99.73 3.77 89.38 99.7 4.89 90.05

HR: Hit rate (%); OEE: Overall equipment effectiveness (%).
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The network that used DSICI3 showed the highest hit rate for mor-
tality and survival, and the highest Kappa coefficients (Tables 5 and 6).
This index is a better representation of competition. It considers com-
petition both within the plot of the study tree as well as in the neigh-
boring plots (Fig. 1), because it uses the competing trees that are larger
than the study tree and it shows weights that takes into account the
reduction of competition as the study tree gets farther away.

The study forest showed the exponential diameter distribution
throughout 31 years, as an inverted-J shape, typical of tropical forests, a
trend that was followed by all ANN (Fig. 3). This trend is common in
forests with no intensive disturbances, with a larger number of in-
dividuals in the smallest diameter classes, which supports this negative
exponential shape (Rubin et al., 2006). That indicates that the density
of the smaller trees supports the population of larger trees (Rubin et al.,
2006).

Non-adherence between the estimated and the observed diametric
distribution during the years 1992, 1997 and 2007 (Table 7) occurred
as a result of overestimation of the first diameter class, on all tested
networks, reaching a difference of 7.5 cm and 29.7, 15.8 and 32.8%, in
1992, 1997 and 2007 respectively, in comparison with DSICI3 model-
ling. That occurred because the trees with smaller diameters are the
ones that suffer the effects of competition the most (Farrior et al., 2016;
Reis et al., 2016). A natural reduction in survival occurred during those
years for this class (7.5 cm) and there was a recovery at the end of the
period (2012), which was followed by ANNs (Fig. 2).

The survival rate was followed by all ANNs throughout time after
forest harvesting (Fig. 4). With the overestimation on the number of
surviving trees for 1992, 1997 and 2007, and with the survival increase
in the last period, all ANNs showed the same trend after 33 years of
forest harvesting. However, by analyzing the annual survival rate, all
tested models followed the trend of the observed data, first with the
increase of survival after harvesting, and then with a continuous re-
duction of survival; that was only possible because of the high hit rate
of neural networks in the classification of survival.

The rise on the survival rate at the beginning of the period after the
forest harvesting was due to the opening in the canopy, which increased
tree growth, while the reduction in the survival rate throughout time

was caused by the continuous closing of the canopy (Reis et al., 2016,
2015).

Although the continuous input variables of the networks did not
show any correlation with survival and mortality percentages, their hit
rate was due to the categorical variables, as shown by Reis et al. (2016),
which had a significant influence on growth, for example, crown
lighting (Gustafsson et al., 2016), liana infestation (Campanello et al.,
2007; Reis et al., 2015); forest class, represented by the different ca-
nopy sizes (Stan and Daniels, 2014); growth groups (Azevedo et al.,
2008; Valle et al., 2007) and damage and rotting, which may be caused
or may not be derived from harvesting activities that also contribute to
mortality in forest stands (Vanclay, 1994), thus corroborating the use of
these variables for the modelling of uneven-aged forests.

The problem in modeling mortality in tropical rain forests is related
to the stochasticity of this component, which makes the prognosis dif-
ficult to establish. That occurs because of the long lifecycle of the trees,
which makes mortality a rare event (King et al., 2000). Its description
requires a regular survey on a large number of trees (Wernsdörfer et al.,
2008) and a series of ecological data that influence regular mortality
and which are hard to obtain and are not measured in permanent plots,
for example, variables relative to the microclimate of the plots. On the
other hand, since it is not such a rare event, and with a higher number
of occurrences, the classification of survival was considered as “sa-
tisfactory” according to the Kappa coefficient on all tested networks
(Table 6).

5. Conclusion

Artificial neural networks are efficient in offering a prognosis on the
survival of individual trees after forest harvesting, with hit rates over
99% and Kappa coefficient over 55%. Also, the use of ANNs is indicated
to offer a prognosis on the annual survival rate and the diameter dis-
tribution at the end of the cutting cycle, therefore, in harvested forests
of the Amazon.

Table 6
Errors and precision of training and Artificial Neural Networks (ANN) in the classification of survival and mortality of individual trees. EO: Error of omission (%); EC: Error of commission
(%); General and conditioned Kappa coefficient (%); ICSID: semi-distance-independent competition index.

ANN Training Test

EO (%) EC (%) Cond. K. (%) General K. EO (%) EC (%) Cond. Kappa (%) General. K (%)

S M S M S M S M S M S M

DSICI 1 0.29 96.08 10.43 37.76 57.67 3.26 6.17 0.31 94.78 9.75 34.17 62.0 4.45 8.30
DSICI 2 0.29 95.97 10.42 37.36 58.13 3.36 6.36 0.27 94.98 9.77 32.14 64.2 4.30 8.06
DSICI 3 0.27 95.91 10.41 35.42 60.30 3.43 6.49 0.32 94.71 9.75 34.96 61.1 4.50 8.37
No DSICI 0.27 96.23 10.44 37.16 58.34 3.14 5.96 0.28 95.11 9.78 33.33 62.9 4.17 7.83

Table 7
Chi-square test () of adherence between the diameter distribution observed and estimated in the years after the forest harvest. ICSID: semi-distance-independent competition index.

Years DSICI 1 DSICI 2 DSICI 3 No DSICI

Chi-Square (χ2) p-value Chi-Square (χ2) p-value Chi-Square (χ2) p-value Chi-Square (χ2) p-value

1982 0.270 0.9999 0.254 0.9999 0.327 0.9999 0.324 0.9999
1983 1.076 0.9998 1.076 0.9998 1.025 0.9998 1.092 0.9998
1985 4.361 0.9296 4.361 0.9296 4.138 0.9409 4.397 0.9277
1987 9.006 0.5315 9.074 0.5251 8713 0.5595 9.155 0.5595
1992 75.234 <0.0001 75.961 <0.0001 75.147 < 0.0001 75.961 < 0.0001
1997 27.799 0.0019 28.318 0.0016 27.287 0.0023 29.265 0.0011
2007 102.869 <0.0001 104.172 <0.0001 102.869 < 0.0001 104.576 < 0.0001
2012 9.595 0.4767 9.695 0.4676 9.835 0.4551 10.219 0.4215

Degrees of freedom: 10.
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