Estimation of mortality and survival of individual trees after harvesting wood using artificial neural networks in the amazon rain forest

AAP RMENT INFO

Keywords:
Forest management
Modeling
Artificial intelligence

ABSTRACT

Modeling individual trees in tropical rain forests in the Amazon allows for the safe use of scarce resources in a sustainable way. Unfortunately, in the Brazilian Amazon, rain forest growth and production models are not yet used to estimate future forest stock. Thus, forest management plans do not present technical-scientific support that guarantees sustainable production of wood throughout the cutting cycle. Therefore, this work aims to estimate the survival and mortality of individual trees in a selectively harvested forest using Artificial Neural Networks (ANN) to support silvicultural decisions in forest management in the Amazon rain forest. In 1979, a selective harvest was carried out, with 72.5 m³ ha⁻¹ in an area of 64 ha in Floresta Nacional do Tapajós, in the state of Pará, Brazil. In 1981, 36 permanent plots were installed at random and inventoried. Nine successive measurements were carried from 1982 to 2012. In the modeling, classification, survival, and mortality, training and ANN testing were performed, using input variables such as: different semi-distance-independent competition indices (DSICI), diameter measured (dbh), forest class (FC), trunk identification class (TIC), competition index (CI), growth groups (GG), liana infestation intensity (liana); and crown lighting (CL); Damage to tree (D) and tree rotting (R). The categorical output variables (Classification) were Dead or Surviving tree. Overall efficiency of the classification was above 89% in training and above 90% in the test for all ANNs. Survival classification hit rate was above 99% in the test and training for all ANNs but the mortality score was low, with hit rates below 6%. The overall Kappa coefficient was below 8% for all ANNs (ranked “poor”) but all ANNs were above 55% in the survival classification (ranked “good”). ANN estimates the individual survival of trees more accurately but this does not occur with mortality, which is a rarer event than survival.

1. Introduction

Studies on the dynamics of rain forests are important to understand the evolution of the forest ecosystem after anthropic disturbances, for example, during forest management for wood production. These studies provide information to model growth and production, and for prognosis on the forest structure throughout the cutting cycle. One of the main contributions is the use of models for individual trees, which is one of the alternatives to manage rain forests with a view to sustainability (Reis et al., 2016).

The individual tree models estimate the survival and mortality, these components of forest dynamics are required for correct prognosis on number of trees, basal area, distribution of diameters and production.

One of the problems in modeling mortality is that several random factors may cause the death of trees. For example, regular mortality is...
caused by aging, suppression and competition, as well as events that occur less frequently, for example, normal incidence of plagues and diseases, and meteorological phenomena (droughts, storms, etc.); by comparison, irregular mortality may be caused by large-proportion fires, plague and disease outbreaks, as well as more severe adverse meteorological conditions (Vanclay, 1994). Mortality also occurs as a result of injuries induced by wood harvesting, which may damage roots and barks, creating points of entry of plagues and diseases; as well as disturbances on the canopy, which may lead to disadvantages to some tree species (Vanclay, 1994).

Tree mortality ratio may be reached using regression (Phillips et al., 2004, 2003; Valle et al., 2007). These authors used a system of equations to estimate the likelihood of natural mortality of trees by considering only a diameter-dependent stochastic process, or artificial intelligence methods, mainly Artificial Neural Networks (ANNs) (Diamantopoulou, 2005; Reis et al., 2016). ANNs are computer models inspired by the nervous system of living beings. One ANN creates a set of parallel processing units, characterized by artificial neurons that are interconnected through a large number of interconnections (Silva et al., 2010).

Different studies that modelled mortality and survival of individual trees using ANN found a more adequate fit than traditional statistical techniques (Guan and Gertner, 1991a, 1991b; King et al., 2000). They have shown that it is possible to have a prognosis on the individual survival and mortality of trees using ANN. These authors used two models to estimate tree mortality: one model with two independent variables, DBH and increase in DBH, and one model with three variables, with an extra categorical variable which represented the condition of the tree. The output was categorical (classification), that is, the dead tree was coded with 0 and the survivor with 1. The ANN results were compared with logistic regression, and better responses were found to predict mortality.

This estimate with ANN for the purpose of classification, indicating whether the tree is dead or alive, shows that ANN has a far more complex function than traditional classification techniques. The final discriminant function is highly flexible and non-linear, and it offers better separation (King et al., 2000).

However, only one study was found on modelling of tree mortality in rain forests (Castro et al., 2015), but it did not involve an extended period of time nor was it conducted in a harvested forest, whose dynamics is quite different from unharvested areas (Reis et al., 2015).

Growth prognosis on the individual diameter of trees, after harvesting in a tropical rain forest in the Amazon, was precisely estimated using ANN (Reis et al., 2016), and the same occurred in other types of uneven-aged forests (Ashraf et al., 2015; Richards et al., 2008).

Given the problem in offering a prognosis on the survival and mortality of individual trees in tropical rain forests, the aim of this study was to offer a prognosis for the individual survival and mortality of trees using post-harvest artificial neural networks in the Amazon, in order to offer input for forestry decisions in forest management.

2. Material and methods

2.1. Study area

The study area is located in the Tapajós National Forest, near Km 67 (55° 00′ W, 2° 45′ S) of the BR-163 Highway, Cuiabá-Santarém. It is part of the Amazon biome and the typology is solid-ground, Dense Ombrophilous Forest. The climate of the region is humid and tropical with mean annual temperature of 26 °C, and it is classified as Am according to Köppen's system. Mean relative humidity corresponds to 86%, with mean annual rainfall from 1900 to 2200 mm. It has flat to wavy topography, with the occurrence of a Dystrophic Yellow Latosol (Alvares et al., 2013; Costa Filho et al., 1980).

In the Tapajós National Forest, especially in the study area, Costa Filho et al. (1980) reported the use of selective harvest, conducted during the 1940s, for four species with high commercial value: Brazilian rosewood (Aniba roseaodora Ducke), Brazilian redwood (Manilkara huberi (Ducke) A. Chev.), Brazilian walnut (Cordia goldiana Huber) and cedar (Cedrela odorata L.). In 1979, an intensive harvest of 64 wood species was conducted on 64 ha of the study area, with mean extraction volume of 72.5 m³ ha⁻¹ (Reis et al., 2010).

The species that stood out in terms of harvest volume, at the time, were: Hymenaea courbaril L., Carapa guianensis Aubl., Manilkara huberi, Lecythis lirida (Miers) S. A. Mori., Bertholletia excelsa Humb. & Bonpl., Astronium leocinte Ducke, Goupia glabra Aubl., Virola michelii Heckel, Erisma uncinatum Warm. and Terminalia amazonia (J. F. Gmel) Exell, which, together, represented 47.4% of the total extracted volume (Reis et al., 2010). The harvest was conducted according to two treatments: cutting all trees with dbh ≥ 45 cm, on 39 ha; and cutting the trees with dbh ≥ 55 cm, on 25 ha (Costa Filho et al., 1980). However, the treatments were considered together, by creating only one community, while taking into account the high similarity found in the comparisons which had been made (Reis et al., 2010).

In 1981, 36 permanent plots of 50 m x 50 m each were randomly installed, where all trees with dbh ≥ 5 cm were botanically identified in loco. New measurements for these permanent plots occurred in 1982, 1983, 1985, 1987, 1992, 1997, 2007, 2010, and 2012 (Reis et al., 2016).

2.2. Variables and data used for training and testing of neural networks

The permanent plots were divided into two groups: one group consisted of 29 plots for training of ANNs, and one group had 7 plots, for the generalization of trained ANNs, with a total of 80% of data for training and 20% for generalization (test). The plots used in the generalization (test) were not part of the training set. This was to evaluate the model with independent data to the training of ANNs (Reis et al., 2016). A total of 78,067 individuals were monitored over time; there were 9332 cases of mortality and 69,735 cases of survival. For mortality, the training used 6819 trees while the test used 1513. For survival, the training used 56,421 trees while the test used 13,314.

To model the mortality and survival of individual trees, the entry variables were: diameter measured at a height of 1.30 m (dbh), forest class (FC), trunk identification class (TIC), competition index (CI), growth groups (GG), liana infestation intensity (liana); variable not observed; liana1: no presence of liana on the tree; liana2: presence of lianas, however, with no injuries; and liana3: presence of lianas, restricting growth); and crown lighting (C). The categorical output variables were considered together, by creating only one community, while taking into account the high similarity found in the comparisons which had been made (Silva et al., 2005: 1 Matte forest: the sub-plot shows at least one tree whose diameter is equal to or larger than 40 cm 2 Forest under construction: the sub-plot has at least one tree whose diameter is equal to or larger than 10 cm and smaller than 40 cm 3 Clearing: there is an opening on the canopy of at least 50% of the area of the sub-plot and few or no trees with a diameter larger than 10 cm on the sub-plot. When existing, the crowns project themselves outside the limits of the sub-plot.

Trunk identification classes (TIC) were defined using the
methodology suggested by Silva et al., 2005:

1. Living standing tree, complete.
2. Living standing tree, no crown, trunk > 4.0 m.
3. Living standing tree, no crown, trunk < 4.0 m.
4. Living fallen tree.
5. Supported tree due to natural cause.
7. Arched tree due to natural cause.

The competition indexes tested on this study were the distance semi-independent competition indexes (DSICI), among which are:

\[
DSICI_i = \frac{D_i^2}{\bar{D}^2}
\]

Eq. (1) Adapted from (Glover and Hool, 1979)

\[
DSICI_i = \text{Bal}_i
\]

Eq. (2) Adapted from (Stage, 1973)

\[
DSICI_i = Z_1 \sum_{j=1}^{n_1} \frac{D_j}{D_i} + Z_2 \sum_{j=1}^{n_2} \frac{D_j}{D_i}
\]

Eq. (3) Adapted from Phillips et al. (2004)

where, \(D_i\) is the diameter of the study tree; \(\bar{D}^2\) is the arithmetic mean of the diameters on the sub-plot of the study tree; \(\text{Bal}_i\) is the sum of the sectional areas of the neighboring trees larger than the sectional area of the study tree, on the sub-plot; \(Z_1\) and \(Z_2\) are the relative importance coefficients for competition of zones 1 and 2, respectively; \(D_j\) and \(D_i\) are the “over-topping” trees on both zones. \(n_1\) and \(n_2\) are the total number of “over-topping” trees on the three zones. The “over-topping” trees are the ones whose diameter is larger than that of the study tree on the sub-plots in both zones.

Zona 1 is a 10 × 10 m square containing \(t\) trees (Fig. 1). Zone 2 is defined as relative to zone 1. Random weights are attributed, reflecting the competition on each zone, considering \(Z_1 = 9\) and \(Z_2 = 4\) (Phillips et al., 2004; Reis et al., 2016).

A cluster analysis was made according to the Euclidean distance method in order to classify the species into growth groups by using the annual periodical increment to the diameter (API, in mm year\(^{-1}\)) (Reis et al., 2016), of the botanical families over the different periods (1981–1982, 1982–1983, 1983–1985, 1985–1987, 1987–1992, 1992–1997, 1997–2007 and 2007–2012), where four growth groups were created (Table 1).

2.3. Training and evaluation of ANNs

The training of ANNs consisted on applying a set of organized steps with the purpose of adjusting the weights and thresholds of the neurons. Therefore, the purpose of such adjustment process, also known as learning algorithm, was to tune the network in order for the responses to be similar to the output values (Silva et al., 2010).

In the modeling process, 1200 ANNs were trained, 300 for each competition index being evaluated (DSICI\(_1\), DSICI\(_2\), and DSICI\(_3\)) and 300 ANNs without the competition index variable in order to simplify the ANNs in the modeling process (Table 2).

Training was based on the generalized delta rule, also known as the backpropagation algorithm, applied in multi-layer feed forward networks–Multilayer Perceptron (MLP), as shown in Fig. 2.

The backpropagation algorithm is performed by successive applications of two specific phases. According to Silva et al. (2010) the first phase to be applied is called “forward propagation”, in which signals \(\{x_1, x_2, \ldots, x_n\}\) of a sample of the training set are inserted into the network inputs and are propagated layer by layer until the respective outputs are produced. The application of this phase aims only to obtain the network responses, taking into account only current values of synaptic weights and thresholds of its neurons, which will remain unchanged during each execution. Subsequently, the responses produced by the outputs of the network are compared with the respective desired responses that are available, the respective deviations (errors) between the desired responses and those produced by the output neurons are then calculated, which will subsequently be used to adjust the weights and thresholds of all their neurons. Because of these error values, the second phase of the backpropagation method, called “reverse propagation” (backward), is then applied. The changes (adjustments) of the synaptic weights and thresholds of all the neurons of the network are executed during this phase (Silva et al., 2010).

In summary, the successive applications of the forward and backward phases make the synaptic weights and thresholds of the neurons automatically adjust at each iteration, implying a gradual decrease in the sum of the errors produced by the responses of the network compared with the desired ones (Silva et al., 2010).

For training, the Intelligent Problem Solver (IPS) tool of the Statistica 13 software (StatSoft Inc, 2016) was used to analyze the activation functions (Table 3) of the intermediate and output layers (Identity, Logistic, Hyperbolic Tangent and Exponential). The initial weights of the networks were randomly generated, and the stopping criterion of the algorithm occurred when the mean square error or the cross-entropy error began to increase; on that occasion the training was interrupted. Network training continued up to 10,000 cycles as long as the error was decreasing.

For the purpose of training, only one hidden layer was used, and the neuron number interval on this layer was defined using the Fletcher-Gloss method (Silva et al., 2010). The neuron number interval was established according to the number of input and output variables, considering the following expression:

\[
(2 \sqrt{n + n_1} \leq n_2 \leq 2n + 1)
\]

where \(n\) is the number of network inputs, \(n_1\) is the amount of neurons on the hidden layer, and \(n_2\) is the amount of neurons on the output
With this function, the activation

\[
\text{Negative exponential function: } f(x) = e^{-\alpha x}
\]

is used, which is a symmetric S-shaped (sigmoid) function. (0, 1)

The classification was evaluated by generating the error matrix (2 × 2), and omission error (OE), commission error (CE), hit rate, global accuracy Index and total Kappa coefficient (by class) could be calculated. The Kappa statistics is usually used to evaluate the accuracy of classification (King et al., 2000; Moisen and Frescino, 2002):

\[
k = \frac{N \sum_{i=1}^{r} \sum_{j=1}^{c} (x_{ij} \cdot x_{ij}^*) - \sum_{i=1}^{r} (x_{i+} \cdot x_{i+}^*)}{N^2 - \sum_{i=1}^{r} (x_{i+} \cdot x_{i+}^*)}
\]

where:

- \(k\) = Kappa coefficient;
- \(k_{\text{cond}}\) = conditional Kappa coefficient by class;
- \(r\) = number of rows on the matrix; \(x_{ij}\) = number of observations on the row(i) and column(j), diagonal values of the matrix; \(x_{i+}\) = total marginal of the row (i); \(x_{+j}\) = total marginal of the column (j); and

\[
r_{xy} = \frac{\text{Cov}(Y, X)}{\sqrt{S^2(X)S^2(Y)}}
\]

Table 2

<table>
<thead>
<tr>
<th>Competition index</th>
<th>Input variables</th>
<th>Number of trainings</th>
<th>Categorical output</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSICI_1</td>
<td>dbh, FC, TG, TC, liana, CL, DSICI, D, R</td>
<td>300</td>
<td>D and S</td>
</tr>
<tr>
<td>DSICI_2</td>
<td>dbh, FC, TG, TC, liana, CL, DSICI, D, R</td>
<td>300</td>
<td>D and S</td>
</tr>
<tr>
<td>DSICI_3</td>
<td>dbh, FC, TG, TC, liana, CL, DSICI, D, R</td>
<td>300</td>
<td>D and S</td>
</tr>
<tr>
<td>No DSICI</td>
<td>dbh, FC, TG, TC, liana, CL, D, R</td>
<td>300</td>
<td>D and S</td>
</tr>
<tr>
<td>General Total</td>
<td></td>
<td>1200</td>
<td></td>
</tr>
</tbody>
</table>

Continuous input variables: DSICI: Distance semi-independent competition index; dbh: Current diameter measured at 1.30 m from the soil (mm); Categorical input variables: FC: forest class; TG: trunk identification class; TG: trunk identification value; CL: crown lighting; D: damage and R: rotting. Categorical output: Dead Tree (D) or Surviving Tree (S).

Fig. 2. A multi-layer feedforward network consisting of an input layer composed of n signals, a hidden neural layer, consisting of \(n_1\) neurons and an output neural layer composed of m neurons representing the respective output values of the application. Adapted from Silva et al. (2010).
and mortality rates (Table 4). No competition index tested showed any
ANN were not linearly correlated with the mean relative to the survival
for the survival classi-
and the test regarding the mortality classi-
i
to the classi-
whether to use another
class when they should be assigned to another
trees are omitted from their correct class and they are assigned to
training and the test were below 38% and 65%, respectively, for sur-
that trees are omitted from their correct class and they are assigned to
Training precision measures and Arti-
tisfactory for classi-

efficiency, the classi-
were considered as “satisfactory”, according to the classification quality scale of the Kappa coefficient (0.61–0.80).
The mortality classification on all networks showed a Kappa coeffi-
cient below 5% (Table 6), both for the test and training. The ANN that
showed the highest Kappa coefficient was the one that used DSICI 2, and
the lowest one was the one that did not use any competition index.
As regards the Kappa coefficient calculated by class (conditioned),
all ANNs reached above 55% for survival (Table 6). A highlight was the
ANNs that used the competition indexes DSICI 2 and DSICI 3, which
achieved Kappa coefficients of 64.2 and 61.1%, respectively, for the test
data. These classifications were considered as “satisfactory”, according to the classification quality scale of the Kappa coefficient.

N = total number of observations.
The Kappa coefficient may be evaluated using the following classi-
fication quality scale (Landis and Koch, 1977): k ≤ 0.20 (poor),
0.21–0.40 (average), 0.41–0.60 (moderate), 0.61–0.80 (satisfactory)
and 0.81–1.00 (very satisfactory).
The diametric distribution of the surviving trees was evaluated for
the different years using the Chi-square adherence test (χ²) at 5% sig-
nificance.

3. Results
The means of the continuous input independent variables used on
ANN were not linearly correlated with the mean relative to the survival
and mortality rates (Table 4). No competition index tested showed any
relationship to mortality and survival percentages.
Global efficiency of the classification was over 89% during training
and over 90% for the test, for all ANNs (Table 5). The hit rate for
classification of the number of surviving trees was over 99% for the test
and training for all ANNs. This percentage was considered to be sa-

tiable for classification of survival. However, the classification for
number of dead trees showed low accuracy, with hit rates below 6%, for
the test and the training of ANNs. Nevertheless, the accuracy of the test
was higher than that of training, and this characterizes an efficient
generalization of ANN for independent data.

The ANN that used DSICI 2 was the one with the highest hit rate for
mortality, and the ANN which did not use any competition index had
the lowest hit rate — under 5% for mortality. This ANN showed values
that were very similar, regarding hit rate for the survival classification,
with 99.72% for the classification, and 90.05% for global efficiency,
which was similar to the efficiency rate of ANNs which used DSICI 1 and
DSICI 3.

All ANNs showed an omission error (OE) over 94% for the training
and the test regarding the mortality classification; in opposition, the OE
for the survival classification was below 0.4%. This error represents
that trees are omitted from their correct class and they are assigned to
another
class when they should be assigned to another
class.
The general Kappa coefficient was below 8% for all ANNs (Table 6),
both for the training and the test. According to the classification quality
scale of the Kappa coefficient (Landis and Koch, 1977), the classification
of all ANNs was considered as “poor” (k ≤ 0.20). The network that
showed the highest Kappa coefficient was the one that used DSICI 2, and
the lowest one was the one that did not use any competition index.

| Table 4 |
| Linear correlation between input and output variables used in ANN training and test. S (%): Average survival rate; M (%): Average mortality rate; DSICI: semi-distance-independent competition index; dbh: diameter at the beginning of t time period of the object tree (mm). |
Variables	S (%)	M (%)
DSICI 1	−0.0379	0.0379
DSICI 2	0.1635	−0.1635
DSICI 3	0.0926	−0.0926
dbh	0.2930	−0.2930

*p < 0.05.

| Table 5 |
| Training precision measures and Artificial Neural Network (ANN) test in the classification of survival (S) and mortality (M) of individual trees. DSICI: semi-distance-independent competition index; MLP: multilayer perceptron. |
ANNs	Index	Architecture	Training	Test								
			HR	OEE	HR	OEE						
			S	M	S	M						
DSICI 1	2	35	44	01:01	Logistic	Exponential	99.71	3.92	89.38	99.7	5.22	90.05
DSICI 2	1	35	16	01:01	Hyperbolic tangent	Hyperbolic tangent	99.91	4.03	89.39	99.7	5.02	90.07
DSICI 3	3	35	66	01:01	Hyperbolic tangent	Exponential	99.73	4.09	89.42	99.7	5.29	90.05
No DSICI	5	34	59	01:01	Logistic	Hyperbolic tangent	99.73	3.77	89.38	99.7	4.89	90.05

HR: Hit rate (%); OEE: Overall equipment effectiveness (%).
The network that used DSICI showed the highest hit rate for mortality and survival, and the highest Kappa coefficients (Tables 5 and 6). This index is a better representation of competition. It considers competition both within the plot of the study tree as well as in the neighboring plots (Fig. 1), because it uses the competing trees that are larger than the study tree and it shows weights that takes into account the reduction of competition as the study tree gets farther away.

The study forest showed the exponential diameter distribution throughout 31 years, as an inverted-J shape, typical of tropical forests, a trend that was followed by all ANN (Fig. 3). This trend is common in forests with no intensive disturbances, with a larger number of individuals in the smallest diameter classes, which supports this negative exponential shape (Rubin et al., 2006). That indicates that the density of the smaller trees supports the population of larger trees (Rubin et al., 2006).

Non-adherence between the estimated and the observed diametric distribution during the years 1992, 1997 and 2007 (Table 7) occurred as a result of overestimation of the first diameter class, on all tested networks, reaching a difference of 7.5 cm and 29.7, 15.8 and 32.8%, in 1992, 1997 and 2007 respectively, in comparison with 1992, 1997 and 2007 respectively, in comparison with 1992, 1997 and 2007 respectively, in comparison with 1992, 1997 and 2007 respectively.

The problem in modeling mortality in tropical rain forests is related to the stochasticity of this component, which makes the prognosis difficult to establish. That occurs because of the long lifecycle of the trees, which makes mortality a rare event (King et al., 2000). Its description requires a regular survey on a large number of trees (Wernsdörfer et al., 2016) and a series of ecological data that influence regular mortality and which are hard to obtain and are not measured in permanent plots, for example, variables relative to the microclimate of the plots. On the other hand, since it is not such a rare event, and with a higher number of occurrences, the classification of survival was considered as "satisfactory" according to the Kappa coefficient on all tested networks (Table 6).

5. Conclusion

Artificial neural networks are efficient in offering a prognosis on the survival of individual trees after forest harvesting, with hit rates over 99% and Kappa coefficient over 55%. Also, the use of ANNs is indicated to offer a prognosis on the annual survival rate and the diameter distribution at the end of the cutting cycle, therefore, in harvested forests of the Amazon.

<table>
<thead>
<tr>
<th>Table 6</th>
<th>Errors and precision of training and Artificial Neural Networks (ANN) in the classification of survival and mortality of individual trees. EO: Error of omission (%); EC: Error of commission (%); General and conditioned Kappa coefficient (%); ICSID: semi-distance-independent competition index.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN</td>
<td>Training</td>
</tr>
<tr>
<td></td>
<td>EO (%)</td>
</tr>
<tr>
<td>S</td>
<td>M</td>
</tr>
<tr>
<td>DSICI 1</td>
<td>0.29</td>
</tr>
<tr>
<td>DSICI 2</td>
<td>0.29</td>
</tr>
<tr>
<td>DSICI 3</td>
<td>0.27</td>
</tr>
<tr>
<td>No DSICI</td>
<td>0.27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 7</th>
<th>Chi-square test () of adherence between the diameter distribution observed and estimated in the years after the forest harvest. ICSID: semi-distance-independent competition index.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years</td>
<td>DSICI 1</td>
</tr>
<tr>
<td></td>
<td>Chi-Square (χ^2)</td>
</tr>
<tr>
<td>1982</td>
<td>0.270</td>
</tr>
<tr>
<td>1983</td>
<td>1.076</td>
</tr>
<tr>
<td>1985</td>
<td>4.361</td>
</tr>
<tr>
<td>1987</td>
<td>9.006</td>
</tr>
<tr>
<td>1992</td>
<td>75.234</td>
</tr>
<tr>
<td>1997</td>
<td>27.799</td>
</tr>
<tr>
<td>2007</td>
<td>102.869</td>
</tr>
<tr>
<td>2012</td>
<td>9.595</td>
</tr>
</tbody>
</table>

Degrees of freedom: 10.
Acknowledgements

To Capes, for the grants offered to the author, and to Embrapa Amazônia Oriental, for providing the monitoring data of permanent plots and for the financial support for the project Segundo Ciclo de Corte: EMBRAPA − 03.12.00.030.00.00 and CNPq 483831/2011-5.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.ecoleng.2017.12.014.

References
